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PID Control of Biochemical Reaction Networks
Max Whitby, Luca Cardelli, Marta Kwiatkowska, Luca Laurenti, Mirco Tribastone, and Max Tschaikowski

Abstract—Principles of feedback control have been shown to
naturally arise in biological systems and have been applied with
success to build synthetic circuits. Here we present an imple-
mentation of a proportional-integral-derivative (PID) controller
as a chemical reaction network with mass action kinetics. This
makes the controller synthesizable in vitro using DNA strand
displacement technology, owing to its demonstrated capability
of realizing arbitrary reaction-network designs as interacting
DNA molecules. Previous related work has studied biological PID
architectures using linearizations of nonlinear dynamics arising
in both the controller components and in the plant. In this paper
we present a proof of correctness of our nonlinear design in
closed loop using arguments from singular perturbation theory.
As an application to show the effectiveness of our controller, we
provide numerical simulations on a genetic model to perform
PID feedback control of protein expression.

Index Terms—Chemical process control, Biological systems,
Modeling, Nonlinear systems

I. INTRODUCTION

CHEMICAL Reaction Networks (CRNs) are a widely used
formalism to describe biochemical systems [1]. More

recently, they have also been employed in synthetic biology as
the reference language for realizing circuits made of DNA [2],
[3]. Due to the numerous potential applications ranging from
smart therapeutics to biosensors, the construction of CRNs that
exhibit prescribed dynamics is a major goal. However, this is
difficult due the complexity of biological systems and limited
knowledge of their dynamics [4], [5].

Negative feedback and proportional-integral-derivative
(PID) controllers are widely used in control engineering due
to their ability to achieve accurate set-point tracking and
robustness to disturbances even with only partial knowledge
of the system. Owing to these properties, such mechanisms
have also been applied with success in synthetic biology [6],
[7], also motivated by the fact that they naturally occur in
living organisms [8]–[13].

In this work we present a CRN implementation of a PID
controller using the so-called dual rail encoding in systems
biology [14], whereby the value of a signal is represented
as the difference between two nonnegative signals, each of
which can in turn be directly represented by concentration
levels of appropriately chosen biochemical species which
are assumed to interact according to mass action kinetics.
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This is advantageous from a practical/technological viewpoint
because any CRN with mass action kinetics has a translation
scheme into a DNA strand displacement device [15], [16].
From a theoretical viewpoint, we prove the correctness of
the PID controller in closed loop with a plant realized as a
mass-action CRN (although our results carry over to plants
given in terms of smooth control systems). Our proof is
based on arguments from singular perturbation theory [17],
establishing that the proportional, integrative and derivative
components do apply the desired control in the limit when
certain kinetic parameters of the CRN implementation go to
infinity. In doing so we extend and formalize our previous
conference paper [18]. There, the correctness was restricted
to assuming each PID component in isolation in closed loop
with the plant. In this paper the result is extended, and a full
provided, for the whole PID design in closed loop. We also
provide further numerical evidence of the effectiveness of this
architecture on a gene expression example [19], [20], where
we control the time evolution of a protein, which can diffuse
from its original compartment, by acting on the expression of
mRNA and we investigate the robustness of PID controlled to
parameter noise.

There is previous work that has focused on simpler archi-
tectures with proportional and integral components only [13],
[14], [21]. More closely related is the literature which also
considers the derivative action. However, in closed loop it
has been studied using transfer functions [22]–[26], and thus
implicitly depends on a linearization of the nonlinear plant
dynamics. In open loop, it has been analyzed for its noise
suppression properties at steady state [27]. Instead, this paper
presents the first analysis of the closed-loop system in the
nonlinear setting to the best of our knowledge. While some
works propose implementations using Hill semantics [22],
[25], in a recent work [26]—which appeared independently
of our previous conference version [18]—the authors present
a similar approach to ours based on dual-rail encoding, mo-
tivated by the possibility to realize the design using DNA
technology, with a major difference in the structure of the
derivative block.

II. BIOCHEMICAL REACTION NETWORKS

Mass-action kinetics: A CRN C = (S,R) is a pair of
finite sets, where S is a set of species and R is a set of
reactions. A reaction is a triple (ρ, α, π), where ρ ∈ NS

0 are
the reagents, π ∈ NS

0 are the products and α ∈ R>0 is the
reaction rate coefficient. The components of vectors ρ and π
represent the stoichiometries of the reaction. We denote the
A-th coordinate of σ ∈ NS

0 by σA; the zero vector in NS
0 is

denoted by ∅. A reaction will be written as

∑
A∈S

ρAA
α
−→ ∑

A∈S
πAA,
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where zero components are omitted.
We consider the well-known reaction-rate equations with

mass-action kinetics. Given a CRN C = (S,R) and an initial
condition x̄ ∈ RS

≥0 representing the initial concentration of
each species, the time course of the concentrations can be
described as the solution of an initial value problem with the
following system of ODEs

∂txA(t) = ∑
(ρ,α,π)∈R

(πA − ρA) ⋅ α ⋅∏
B∈S

xB(t)ρB , (1)

and initial condition x(0) = x̄. For a species A ∈ S we denote
by xA(t), or xA when the time dependence is clear from the
context, the concentration of A at time t.

Dual rail encoding: The solutions to (1) are non-negative
if the initial conditions are. However, a PID controller might
involve negative quantities such as the error difference between
the set-point and the output, as well as its derivative. In
the dual rail encoding [14], a signal is decomposed into a
“positive” and “negative” species component obeying mass
action kinetics, whilst such that each individual species con-
centrations cannot be negative. For a signal A we denote
the two distinct component species by A

+ and A
−, i.e., A

is given by the difference A
+ − A

−. Reactions of the form
A
+ +A− → ∅ keep the concentrations bounded.

Graphical representation: Throughout the paper we will
use a compact formal representation of CRNs based on
a graphical notation as a labelled directed bipartite graph,
according to the Petri net representation with species and
reaction nodes [28]. A reaction node is a square labelled with
a rate coefficient. A species node is a circle labelled with
a species name. There is an edge from a species node to
a reaction node if the species is a reagent of the reaction;
similarly, an edge from a reaction node to a species node
indicates a product of the reaction. For example, we have the
following representation for the reaction 2A+B

α
−→ B + 2C:

Throughout the rest of the paper, for ease of presentation we
do not draw labels on edges if the related multiset multiplicity
is 1. We also remove the black box representing reaction nodes
to reduce clutter. Finally, we introduce a short-hand notation
for recurring reaction patterns as shown in Figure 1, where
each arc is either a pointed arrow (↑) or a rounded arrow m
with the source represented by the flat edge and the target
represented by the arrow head. A pointed arrow represents a
normal reaction between reactants and products, and a rounded
arrow represents a catalyst, i.e., a species C with positive
stoichiometry in a reaction ρ

α
−→ π such that ρC = πC .

III. CRN IMPLEMENTATION OF THE PID CONTROLLER

We introduce the CRN implementation of the proportional,
integral, and derivative components of a PID controller. As
illustrated in Figure 2, we describe them as blocks where the
incoming species are E

± (which will indicate the dual-rail

Figure 1: Short-hand CRN graphical notation. (a) A catalytic
bi-molecular reaction A +B → B + C as an equivalent Petri
net; (b) a catalytic uni-molecular reaction A → A + B; (c)
a sample CRN depicted using the short-hand notation (with
some square nodes omitted).

error signal between the species representing the set-point R
and the plant output Y ). The output of the PID controller is
denoted by U±.

Let (SΣ,RΣ) denote the mass-action CRN representing the
plant. We construct a CRN encoding of a PID feedback law as
indicated in Figure 2. For the benefit of presentation, we focus
on one-dimensional controls, since the discussion generalises
to the multidimensional case in a straightforward manner. The
CRN encoding is given by the following components:
• subtraction block (SM

,RM);
• addition block (SA

,RA);
• proportional block (SP

,RP), with gain rP ;
• integral block (SI

,RI), with gain rI ;
• derivative block (SD

,RD), with gain rD.
where the P, I and D blocks can be removed by setting their
gains to zero. With this, the overall CRN is given by

(SΣ,RΣ) ∪ (SF ,RF ), (2)

where the feedback law CRN is defined by

(SF ,RF ) = ⋃
X∈X

(SX ,RX), X = {M,A,P, I,D}.

We now detail each of the blocks in Figure 2. Follow-
ing [14], we first discuss the addition, subtraction, proportional
and integral blocks in Section III-A. In Section III-B we
present the derivative block. The formal correctness of all
blocks is shown by means of singular perturbation theory in
Section V, instead. That is, we show that for the feedback
loop in Figure 2 and any plant, the proportional, derivative,
and integral block are computing the correct functions.

A. Subtraction, Addition, Proportional and Integral Blocks

Definition 1 (Subtraction/minus block, Fig. 2(M)). For in-
coming species R

+
, R

−
, Y , outgoing species E

+, E− and
parameters sM , q ∈ R>0, the subtraction block is the CRN
composed by the following reactions

Y
sM
−⟶ Y + E

+
R
− sM
−⟶ R

−
+ E

+
R
+ sM
−⟶ R

+
+ E

−

E
+
+ E

− q
−⟶ ∅ E

+ sM
−⟶ ∅ E

− sM
−⟶ ∅
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Figure 2: We present our feedback loop (top left) which takes a smooth reference signal R (in dual rail in its most general
case) and, along with the feedback Y , produces an error E computed as Y −R. Signal E is obtained by the subtraction block
(M), and is fed to the controller, the chemical composition of which is described in (P),(I),(D). The proportional and integral
blocks (P),(I) are taken from [14]. The proportional block returns the product rPxE for a given xE and rP ≥ 0, while the
integral block takes an incoming signal xE and computes the outgoing signal rI ∫ t0 xE(τ)dτ for some gain factor rI ≥ 0.
Instead, the novel derivative block (D) takes an incoming signal xE and produces the outgoing signal rD∂txE , where rD ≥ 0
is again a gain factor. The foregoing blocks are summed by the addition block (A), yielding a control signal xU which steers
the plant by the CRN encoding presented in Section III. As a result, the plant (Plant) produces a signal Y that is fed back as
a single-rail signal. The presence of gain factors in each block allows one to adjust the weights of each block.

The addition block is given by the following reactions.

Definition 2 (Three-Way addition block [14], Fig. 2(A)).
For incoming species P+, I+, D+ and P

−
, I
−
, D

−, outgoing
species U+, U−, and parameters s, q ∈ R>0 the addition block
is a CRN composed by the following reactions

P
+ sU
−⟶ P

+
+ U

+
I
+ sU
−⟶ I

+
+ U

+
D
+ sU
−⟶ D

+
+ U

+

P
− sU
−⟶ P

−
+ U

−
I
− sU
−⟶ I

−
+ U

−
D
− sU
−⟶ D

−
+ U

−

U
+
+ U

− q
−⟶ ∅ U

+ sU
−⟶ ∅ U

− sU
−⟶ ∅

We next provide the proportional block which computes an
outgoing signal that is proportional to the incoming signal.

Definition 3 (Proportional block [14], Fig. 2(P)). For incom-
ing species E

+
, E

−, outgoing species P
+
, P

−, parameters
sP , q ∈ R>0, and the gain factor rP ∈ R≥0, the proportional
block is a CRN composed by the following reactions

E
+ rP sP
−−⟶ E

+
+ P

+
E
− rP sP
−−⟶ E

−
+ P

−

P
+
+ P

− q
−⟶ ∅ P

+ sP
−⟶ ∅

P
− sP
−⟶ ∅

The integral component computes a multiple of the integral
of the incoming signal.

Definition 4 (Integral block [14], Fig. 2(I)). For incoming
species E+

, E
−, outgoing species I+, I−, parameter q ∈ R>0

and gain factor rI ∈ R≥0, the integral block is given by the
following CRN

E
+ rI
−⟶ E

+
+ I

+
E
− rI
−⟶ E

−
+ I

−
I
+
+ I

− q
−⟶ ∅

B. Derivative Block
Building a derivative module by chemical reactions is chal-

lenging because differentiation can only be done by comparing

a signal at two time points, inherently requiring an approxi-
mation dependent on the time difference. This is resolved by
the network in Figure 2 (D), which handles dual rail signals.
Intuitively, the incoming signals E

+ and E
− are sampled

at two time points, E+, A+ and E
−, A−, respectively, and

a multiple of their difference is provided via D
+, D−. In

Figure 2 (D), the three reactions

E
+ rDsAsD
−−−−−⟶E

+
+D

+
, A

− sAsD
−−−⟶A

−
+D

+
, D

+ sD
−⟶∅

imply xD+ ≈ rDsAxE+ + sAxA− when sD is large. In a
similar fashion, the symmetric three reactions ensure that
xD− ≈ rDsAxE− + sAxA+ , allowing us thus to obtain

xD+ − xD− ≈ sA(rDxE+ + xA−) − sA(rDxE− + xA+) (3)

for large sD. The above conclusion anticipates Theorem 1
from Section V and separates the fast and very fast time
scales. Assuming that (3) when sD →∞, we next anticipate
Theorem 2 from Section V that separates the slow and fast
time scale. To this end, we first note that the two reactions

E
+ rDsA
−−−⟶ E

+
+A

+ and A
+ sA
−⟶ ∅

imply xA+ ≈ rDxE+ for large sA. In fact, since xA+

tracks rDxE+ with a delay that is reciprocal to sA, we can
approximate ∂trDxE+ by rDxE+ − xA+ when sA is large.
The symmetric two reactions imply in a similar manner that
∂trDxE− ≈ rDxE− − xA− when sA → ∞. Since sD → ∞
was considered before sA →∞, it intuitively holds true that
1 ≪ sA ≪ sD and we obtain the time scales slow, fast and
very fast, respectively. The overall discussion motivates the
approximation

xD+ − xD− ≈ sA(rDxE+ + xA−) − sA(rDxE− + xA+)
= sA(rDxE+ − xA+) − sA(rDxE− − xA−)
≈ ∂trDxE+ − ∂trDxE−
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Definition 5 (Derivative block, Fig. 2(D)). For incoming
species E+

, E
−, auxiliary species A+, A−, outgoing species

D
+
, D

−, parameters q, sD, sA ∈ R>0 and gain factor rD ∈

R≥0, the derivative block is a CRN composed by the following
reactions

E
+ rDsA
−−−⟶ E

+
+A

+
E
− rDsA
−−−⟶ E

−
+A

−

E
+ rDsAsD
−−−−−⟶ E

+
+D

+
E
− rDsAsD
−−−−−⟶ E

−
+D

−

A
+ sA
−⟶ ∅ A

− sA
−⟶ ∅

A
+ sAsD
−−−⟶ A

+
+D

−
A
− sAsD
−−−⟶ A

−
+D

+

D
+ sD
−⟶ ∅ D

− sD
−⟶ ∅

D
+
+D

− q
−⟶ ∅

The correctness results provided in Section V ensure that
the feedback loop depicted in Figure 2 converges, as all scaling
parameters s approach infinity, to the solution of a limit
ODE system which arises from Figure 2 when all component
blocks (M), (P), (I), (D) and (A) are replaced with the respec-
tive mathematical operations (i.e., substraction, multiplication,
integration, differentiation and addition). By doing so, we
extend [18] which established correctness only when exactly
one component was replaced with its mathematical operation.

IV. BIOCHEMICAL IMPLEMENTATION OF CRNS

The chemical reaction networks we have described in
Section III are abstract, in the sense that we do not specify
what the chemical species may represent. A priori, there is no
reason to believe that chemical species that obey those precise
reactions may exist.

There are currently at least three approaches to assigning
chemical species to such abstract networks. In Synthetic Bi-
ology one looks for naturally occurring biological molecules,
typically genes and proteins, and modifies them and adapts
them as needed by genetic engineering or artificial evolution.
This is hard, because proteins are not easy to engineer from
scratch, their reactions obey complex kinetic laws due to
their complex structure, and their reaction rates are not easily
predictable from their structure, and fall within restricted
ranges. Moreover, the desired reactions need to execute in
the largely unknown context of a living cell, competing for
energy. Here one seeks to optimize the desired functionality
starting from proteins and enzymes that are well studied and
readily available, based on the principles of enzyme kinetics.
Such is the case for example for the PID controller of [25],
whose implementation and mathematical analysis is based on
variations of Michaelis-Menten enzymatic kinetics.

A different approach comes from Molecular Programming,
where the chemical species are in principle completely syn-
thetic and not of biological origin, although DNA (natural or
synthetic) is commonly used. The reactions typically run in-
vitro in completely controlled environments with no unknown
components, with the eventual goal of embedding them in
living cells, or in other deployable physical media.

A third, intermediate, approach is to pick a few well
characterized components and energy sources of biological

origin, and use them in a uniform way in controlled in-
vitro environments. This works extremely well due to the
reliable and robust performance of naturally evolved biological
components, such as polymerases and other enzymes, although
the way the components themselves work is still only partially
understood and only partially adaptable [29].

We focus here on a molecular programming approach based
on toehold mediated DNA strand displacement [30], which
is a kind of reaction between relatively short DNA strands
that is unnatural, or thought to occur rarely in nature. The
species of our abstract chemical reaction networks are each
represented by an arbitrary (but carefully chosen) DNA strand;
their reactions are designed to obey exactly the abstract
reactions that the species are supposed to engage with. No
other chemicals are used, except suitable buffer solutions,
and no external energy source is provided: the reactions run
down thermodynamically from the initial molecule popula-
tions. It has been shown that any CRN (any finite set of
abstract chemical reactions with mass action kinetics, up to
time rescaling) can be systematically compiled to such DNA
molecules [31], which can then be produced by DNA synthesis
or by bacterial cloning. The number of species is in principle
unbounded, just by using longer strands for their encoding.
Each abstract reaction is compiled to a sequence of DNA
strand displacement operations, but the scheme can readily
approximate to an arbitrary degree the mass action kinetics
used in Section III [31]. Because of uniform architecture, the
reaction rates are naturally equal for all reactions with the same
number or reagents. It is also known experimentally that the re-
action rates can be tuned across multiple orders of magnitudes
[30], both in large exponential steps by modifying toehold
lengths, and in small tuning steps by choosing particular strand
sequences. The reaction rates are largely predictable by models
of DNA structure [32], although in practice they are then
tuned experimentally. This approach has been demonstrated
experimentally, including, e.g., systems where 3 abstract reac-
tions must have the same rates to a good approximation [3],
[33]. The challenges in this area are to scale up the speed
and number of concurrent reactions, with systems with over
100 distinct interacting sequences being demonstrated [34].
Moreover, there are significant challenges in deploying any
DNA-based structures in-vivo, requiring isolation methods
[35], or switching from DNA to RNA [36] or switching from
DNA to artificial polymers that a cell would not interfere
with [37]. In summary, biochemical implementation of CRNs
is an active area of research, with solid theoretical, scientific,
and engineering foundations, and with excellent prospects. We
currently rely on approaches based on systematic compilation
of CRNs, and on mass-action kinetics.

V. ASYMPTOTIC CORRECTNESS

Let Σ0 be given by SΣ = Σ0∪̇{U+, U−}, and let
(∂txΣ0

, ∂txU+ , ∂txU−) = (fΣ0
(xΣ0

, xU+ , xU−), 0, 0) denote
the ODE system associated to the plant CRN (SΣ,RΣ)
from (2). Note that on its own, i.e., without the PID feedback
loop in place, the ODEs of the plant are such that xU+ , xU−

have zero derivatives. This essentially reflects that xU+ , xU−
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are plant parameters, rather than plant states. Because of this,
we refer to xΣ0

as the state vector of the plant.

Formally, the output of the plant, Y , is the coordinate xY
of the state vector xΣ0

. Moreover, the ODE system describing
the entire PID feedback control loop is given by

∂txΣ0
= fΣ0

(xΣ0
, xU+ , xU−)

∂txE+ = sM(xY + xR− − xE+) − qxE+xE−

∂txE− = sM(xR+ − xE−) − qxE+xE−

∂txP+ = sP (rPxE+ − xP+) − qxP+xP−

∂txP− = sP (rPxE− − xP−) − qxP+xP−

∂txI+ = rIxE+ − qxI+xI−

∂txI− = rIxE− − qxI+xI− (4)
∂txA+ = sA(rDxE+ − xA+)
∂txA− = sA(rDxE− − xA−)
∂txD+ = sD(sA(rDxE+ + xA−) − xD+) − qxD+xD−

∂txD− = sD(sA(rDxE− + xA+) − xD−) − qxD+xD−

∂txU+ = sUxP+ + sUxI+ + sUxD+ − sUxU+ − qxU+xU−

∂txU− = sUxP− + sUxI− + sUxD− − sUxU− − qxU+xU− .

With (4) at hand, we are ready to state our first result.

Theorem 1. If q > 0 and sA > 0 are held fixed, while
sM = κMs, sP = κP s, sD = κDs and sU = κUs for positive
constants κM , κP , κD, κU , then, as s→∞, the solution of (4)
converges pointwise on interval [0;T ] to the solution of the
limit system

∂txΣ0
= fΣ0

(xΣ0
, xU+ , xU−)

xE+ = xY + xR−

xE− = xR+

xP+ = rPxE+

xP− = rPxE−

∂txI+ = rIxE+ − qxI+xI−

∂txI− = rIxE− − qxI+xI−

∂txA+ = sA(rDxE+ − xA+)
∂txA− = sA(rDxE− − xA−)
xD+ = sA(rDxE+ + xA−)
xD− = sA(rDxE− + xA+)
xU+ = xP+ + xI+ + xD+

xU− = xP− + xI− + xD− ,

(5)

if it admits a solution and the reference trajectories xR+ , xR−

are continuously differentiable on [0;T ].

Proof of Theorem 1. We interpret xE+ , xE− , xP+ , xP− , xD+ ,
xD− , xU+ and xU− as fast variables in the sense of Tikhonov’s
theorem [17, Section 8.2]. Consequently, the fast system is

given by

∂txE+ = κMs(xY + xR− − xE+)
∂txE− = κMs(xR+ − xE−)
∂txP+ = κP s(rPxE+ − xP+)
∂txP− = κP s(rPxE− − xP−)
∂txD+ = κDs(sA(rDxE+ + xA−) − xD+)
∂txD− = κDs(sA(rDxE− + xA+) − xD−)
∂txU+ = κUs(xP+ + xI+ + xD+ − xU+)
∂txU− = κUs(xP− + xI− + xD− − xU−)

Note that slow variables in the sense of Tikhonov’s theorem,
i.e., xΣ0

, xI+ , xI− , xA+ , xA− and the reference signal xR+

and xR− are treated as constants in the fast system, while all
terms that are not multiplied by the scaling parameter s are
dropped (e.g., −qxE+xE− ). With this, the fast system is linear
and admits the unique equilibrium

xE+ = xY + xR−

xE− = xR+

xP+ = rPxE+

xP− = rPxE−

xD+ = sA(rDxE+ + xA−)
xD− = sA(rDxE− + xA+)
xU+ = xP+ + xI+ + xD+

xU− = xP− + xI− + xD− .

Since the linear system can be expressed using an upper
triangular coefficient with diagonal

(−κMs,−κMs,−κP s,−κP s,−κDs,−κDs,−κUs,−κUs)T ,

the coefficient matrix admits only negative eigenvalues. This,
in turn, ensures that the unique equilibrium from above is
a global attractor of the fast system. With this, Tikhonov’s
theorem [17, Section 8.2] yields the statement.

The next result assumes that a) the dynamics of the plant can
be restated in terms of the difference signal xU = xU+ − xU−

and that b) the dynamics of the output is independent of xU .
While this limits the way how control signals can act on the
plant (e.g., by the second assumption, the plant output cannot
be actuated directly by the PID controller), various actuation
schema satisfy both assumptions, see Section VI.

Theorem 2. Defining the difference signal of species A by
xA ∶= xA+ − xA− , let us assume that the limit system (5) can
be written as

∂txΣ0
= g(xΣ0

, xU)
xE = xY − xR
xP = rPxE

∂txI = rIxE

∂txA = sA(rDxE − xA)
xD = sA(rDxE − xA)
xU = xP + xI + xD

(6)
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That is, there exists a continuously differentiable function g
such that

g(xΣ0
, xU) = fΣ0

(xΣ0
, xU+ , xU−).

Moreover, assume that gY does not depend on xU . Then, if
sA → ∞, the solution of system (6) converges pointwise on
interval [0;T ] to the solution of the limit system

∂tx
∗
Σ0
= g(x∗Σ0

, x
∗
U)

x
∗
E = x

∗
Y − xR

x
∗
P = rPx

∗
E

∂tx
∗
I = rIx

∗
E

x
∗
D = rD∂tx

∗
E

x
∗
U = x

∗
P + x

∗
I + x

∗
D,

(7)

whenever (6) admits a solution and the reference trajectory
xR is twice continuously differentiable on [0;T ].
Proof of Theorem 2. The key idea is to extend the system
by the differential equation of xD and to apply Tikhonov’s
theorem on the extended system. Specifically, differentiating
xD yields

∂txΣ0
= g(xΣ0

, xU)
xE = xY − xR
xP = rPxE

∂txI = rIxE

∂txA = sA(rDxE − xA)
xD = sA(rDxE − xA)

∂txD = sA(rD∂txE − xD)
xU = xP + xI + xD

Then, together with

h(xΣ0
, xI , xD, xR) ∶= g(xΣ0

, rP (xY − xR) + xI + xD),

an iterative application of the algebraic equations

xE = xY − xR
xP = rPxE

xD = sA(rDxE − xA)
xU = xP + xI + xD

allows us to rewrite the system as

∂txΣ0
= h(xΣ0

, xI , xD, xR)
∂txI = rI(xY − xR)
∂txA = sA(rD(xY − xR) − xA)
∂txD = sArD(hY (xΣ0

, xI , xD, xR) − ∂txR) − sAxD
By interpreting xA, xD as fast and xΣ0

, xI , xR as slow vari-
ables, the fast system is given by

∂txA = sA(rD(xY − xR) − xA)
∂txD = sArD(hY (xΣ0

, xI , xD, xR) − ∂txR) − sAxD
By assumption, hY does not depend on xD because it does
not depend on xU . Hence, the term hY (xΣ0

, xI , xD, xR) acts

as a constant, thus implying that the fast system is linear with
unique global attractor

xA = rD(xY − xR)
xD = rD(hY (xΣ0

, xI , xD, xR) − ∂txR)
This allows us to obtain the claim by using Tikhonov’s
theorem [17, Section 8.2].

By combining both preceding theorems, we can state our
main result.

Theorem 3. Assume that the reference signal (xR+ , xR−)
is twice continuously differentiable and that systems (4)-(7)
admit unique solutions on [0;T ] for given initial conditions
satisfying xΣ0

(0) = x
∗
Σ0

(0). Then, for any t ∈ [0;T ] and
η > 0, there exist s > 0 and sA > 0 such that the solutions
of (4) and (7) satisfy

∥xΣ0
(t) − x∗Σ0

(t)∥ ≤ η,
provided that sM = κMs, sP = κP s, sD = κDs and sU =

κUs in (4).

Proof of Theorem 3. By Theorem 2, we can pick an sA > 0
such that

∥x∗Σ0
(t) − x̂Σ0

(t)∥ ≤ η/2,

where x̂Σ0
refers to the solution of (6). Moreover, thanks to

Theorem 1, for the just fixed sA > 0 there exists an s > 0
satisfying

∥xΣ0
(t) − x̃Σ0

(t)∥ ≤ η/2,

where xΣ0
(t) and x̃Σ0

(t) refers to the solution of (4) and (5),
respectively. Since x̃Σ0

(t) = x̂Σ0
(t), the triangle inequality

yields the claim.

It appears that the correctness of the derivative component
cannot be inferred by using two instead of three time scales.
To see this and to allow for a better comparison with related
work, let us assume that sA = 1/εA and sD = 1/εD for small
εA, εD > 0. With this, the differential equation of xD+

∂txD+ = sD(sA(rDxE+ + xA−) − xD+) − qxD+xD−

rewrites as

εDεA∂txD+ = (rDxE+ + xA−) − εAxD+ − εDεAqxD+xD−

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
FD+ (xE+ ,xA− ,xD+ ,εA,εD)∶=

Noting that FD+(xE+ , xA− , xD+ , 0, 0) = rDxE++xA− does not
depend on xD+ , it becomes apparent that εD and εA cannot
approach zero simultaneously. Moreover, this demonstrates
why multi-scale convergence results such as [17], [38] appear
to be not directly applicable.

VI. NUMERICAL SIMULATIONS

In this section we apply the PID feedback control archi-
tecture developed in this paper to a protein control problem.
In particular, we consider a protein, expressed from a gene,
and assume that the protein can diffuse between two different
compartments according to a passive diffusion model [39].
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A. Comparison of PI and PID controllers

The model is composed of the following reactions, where
for simplicity we fixed unitary kinetic parameters

∅
1
−⟶ mRNA mRNA

1
−⟶→∅

mRNA
1
−⟶ mRNA + Pro1 Pro1

1
−⟶ ∅

Pro1
1
−⟶ Pro2 Pro2

1
−⟶ Pro1

Pro2
1
−⟶ ∅.

That is, we have that mRNA catalyses the production of the
protein in the first compartment (Pro1), which can then diffuse
in the second compartment (Pro2) by following its gradient
of concentration.

The objective of the control is to have the protein concen-
tration in the second compartment, Pro2, to follow a reference
signal. Given U+ and U−, the control signals synthesized by
the controller, we assume that these can act on the plant by
regulating the expression rate of the mRNA. This assumption
is justified by the fact that this mechanism can be implemented
synthetically. We consider the following reactions to model
such actuation:

U
+
+mRNA

l
−⟶ U

+
+ 2mRNA U

−
+mRNA

l
−⟶ U

−
.

(8)

We note that these satisfy the conditions of Theorem 2.
In this model, a high concentration of U+ will increase the

production rate of mRNA and so of Pro1 and Pro2, whereas a
high concentration of U− will decrease the amount of mRNA.
For our experiments we fix l = 0.08. Note that this is an
indirect control problem where we cannot act directly on the
target species Pro2, which is the scenario where the derivative
component of the PID can be of greater help.

In Figure 3 we compare the performance of PI and PID
controllers for various reference signals. In particular, we
consider a linear production/degradation model (top left), a
pulsed degradation model (top right), a sine wave (bottom left),
and a sigmoid (bottom right). For all the tests we consider the
same parameters for PI and PID controllers (as reported in the
figure caption). It possible to observe that, whereas a negative
feedback with a PI controller can already track all signals
correctly, in the case of a PID controller the time evolution of
the concentration of Pro2 has reduced oscillations around the
reference signals. In all cases, as expected, the time for the
convergence of the plant to the reference signal has decreased
due to the action of the derivative block.

B. Robustness to Parameter Noise

In Figure 3 we fixed some of the rates of the reactions
composing our PID controller to be exactly the same. This
was required in Theorem 3 to establish the correctness of the
closed loop system. In practice, as discussed in Section IV,
the assumption that some of the rates are equal may hold
only approximately. As a consequence, in this subsection we
empirically evaluate the robustness of our PID architecture
when this assumption does not hold exactly.

Figure 3: We consider the diffusion model in Section VI and
compare the time evolution of the species Pro2 with different
reference signals (green lines) for PID and PI feedback control
with the same parameters for all figures (rD = 0.05, rP =

0.025, rI = 0.0045, sP = 1, sM = sU = sD = sA = q =
100) It is possible to observe that while Pro2 already tracks
correctly the reference signals for PI control, in the case of a
PID controller, the output has reduced oscillations around the
reference signal.

We consider the same scenario as in Figure 3 and perturb
each rate by a value uniformly sampled between [− ∣K∣

2
,
∣K∣
2

]
for ∣K∣ ≥ 0, i.e., each rate is multiplied by factor (1 + k)
with k ∈ [− ∣K∣

2
,
∣K∣
2

]. In the box-plots reported in Figure 4
we plot, for different values of ∣K∣, the distribution of the
maximum relative error obtained by numerically solving the
resulting ODEs system multiple times for each ∣K∣ (1000 for
each value). The maximum relative error is defined as the
maximum of the distance between the reference signal and
the output of the plant at time t for t ∈ [0, 10000], divided
by the concentration of the reference signal at time t = 10000
(when the system has reached the equilibrium). We note that
even relatively large fluctuations of the rates (i.e., ∣K∣ < 0.14)
do not influence significantly the correctness of the system on
average. Note also that for ∣K∣ = 0 the resulting error is not
0. This is because even when the rates are not affect by noise,
the PID controller still requires a non-zero amount of time to
reach the value of the reference signal.

VII. CONCLUSIONS

This work considered feedback control with PID controllers
expressed by a novel CRN implementation which computes
the derivative of an input molecular signal. We applied our
framework to control a gene expression model where a pro-
tein can diffuse across different compartments and showed
improved performance compared to a PI feedback control.
The asymptotic correctness of the biochemical PID controller
was established. An interesting aspect, which has not been
considered in this paper, is to study the effect that the proposed
control system has on noise. This is left as future work.
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Figure 4: Box plots representing the maximum relative error
of our PID controller from Figure 3, while perturbing each rate
of our PID controller by a value uniformly sampled between
[− ∣K∣

2
,
∣K∣
2

]. For each value of ∣K∣ statistics are computed
over 1000 different executions of the system. Blue area is the
area between first and third quantile, with black horizontal
bar being the median. Red cross is the average. Blue dots
represents outliers (according to the R-8 method).
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